	1. Beta-oxidation is the process by which fatty acids are broken down into:	
	a) Glucose	
	b) Amino acids	
	c) Acetyl CoA	
	d) Ketone bodies (initially)	
	2. The primary location for beta-oxidation of fatty acids is the:	
	a) Cytoplasm	
	b) Nucleus	
	c) Mitochondria (matrix)	
	d) Endoplasmic reticulum	
	3. Each cycle of beta-oxidation releases a molecule of acetyl CoA, NADH, and	
	FADH2. True or False?	
	* True	
	* False	
4. Acetyl CoA from beta-oxidation can enter the citric acid cycle for further energy production. True or False?		
	* True	
	* False	
	5. When carbohydrate intake is low and fatty acid breakdown is high, the liver produces ketone bodies as an alternative fuel source for some tissues, particularly:	

	a) Muscle tissue
	b) Liver tissue
	c) Nervous system tissue
	d) All of the above (depending on metabolic state)
6	. The three main ketone bodies are:
	a) Glucose, pyruvate, and lactate
	b) Acetoacetate, acetone, and beta-hydroxybutyrate
	c) Triglycerides, cholesterol esters, and phospholipids
	d) Carnitine, palmitoyl CoA, and malonyl CoA
	iabetes due to excessive production of ketone bodies and a buildup of acids the blood. True or False? * True
	* False
8	. De novo fatty acid synthesis refers to the synthesis of fatty acids from:
	a) Existing fatty acids
	b) Ketone bodies
	c) Simple carbohydrates (glucose)
1	d) Amino acids
9	. The primary site for de novo fatty acid synthesis is the:
	a) Mitochondria
	b) Cytoplasm

c) Nucleus	
d) Endoplasmic reticulum	
10. Cholesterol is an important molecule including:	with various biological functions,
a) Energy storage	, 60
b) Membrane structure and function	
c) Hormone synthesis	
d) All of the above	36
11. The liver can convert cholesterol into	bile acids, which are important for:
a) Energy production	
b) Fat digestion and absorption	
c) Hormone regulation	
d) Immune function	
12. Cholesterol can also be converted int	o steroid hormones such as:
a) Insulin and glucagon	
b) Testosterone and estrogen	
c) Thyroid hormones	
d) Growth hormone	

13. Vitamin D is synthesized in the skin from a cholesterol derivative upon exposure to sunlight. True or False?

* True

* False

18. Which of the following statements about carnitine is TRUE?

- a) It is a vitamin required for fatty acid transport into the mitochondria for beta-oxidation.
 - b) It is a hormone that regulates cholesterol synthesis.
 - c) It is a building block of proteins.
 - d) It is a waste product of fatty acid metabolism.

19. What is the main function of triglycerides?

- a) Components of cell membranes
- b) Signaling molecules in cellular communication
- c) Primary source of energy for cellular processes
- d) Insulators and energy storage molecules

20. Which organ plays a central role in both cholesterol synthesis and breakdown?

- a) Kidneys
- b) Muscles
- c) Liver
- d) Pancreas

21. Which of the following is NOT a general reaction of amino acid metabolism?

- (a) Transamination
- (b) Phosphorylation
- (c) Deamination
- (d) Decarboxylation

22. During transamination, the amino group of an amino acid is transferred to:(a) Another amino acid(b) Water(c) Carbon dioxide

23. The primary product of deamination is:

(a) Ammonia

(d) Glucose

- (b) Urea
- (c) Keto acid
- (d) Carbon dioxide

24. Decarboxylation of an amino acid results in the formation of:

- (a) An amine
- (b) An amide
- (c) An amine and CO2
- (d) A ketogenic acid

25. The urea cycle occurs primarily in the:

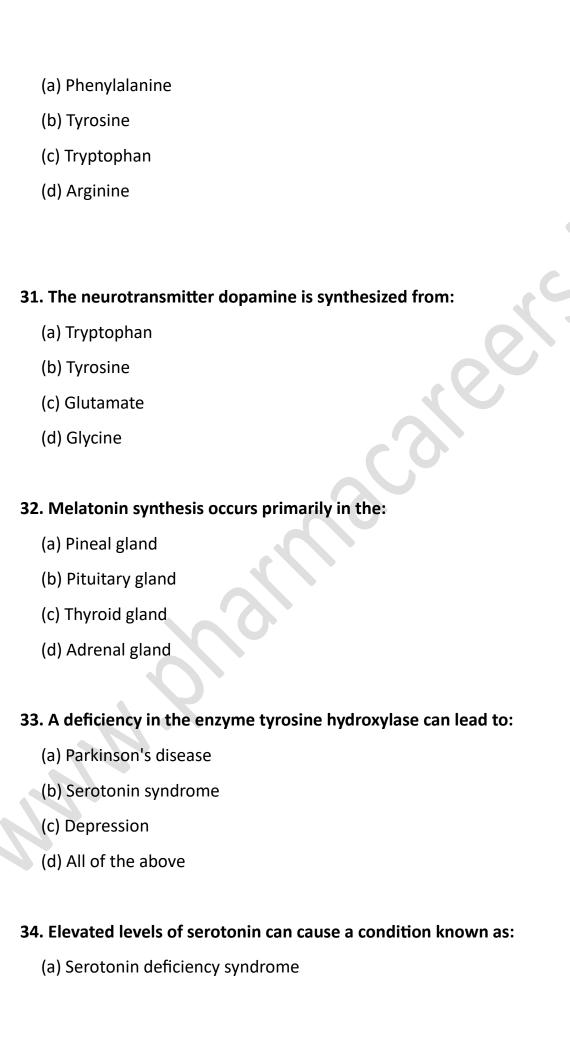
- (a) Liver
- (b) Kidneys
- (c) Muscles
- (d) Brain

26. Which of the following is a precursor for the formation of urea in the urea cycle?

- (a) Glutamate
- (b) Aspartate
- (c) Arginine
- (d) All of the above

27. A deficiency in the enzyme ornithine transcarbamoylase can lead to:

- (a) Phenylketonuria
- (b) Alkaptonuria
- (c) Cystinuria
- (d) Ornithine carbamoyltransferase deficiency


28. Hyperammonemia is a symptom associated with disorders of the:

- (a) Urea cycle
- (b) Heme catabolism
- (c) Phenylalanine metabolism
- (d) Tyrosine metabolism

29. Which of the following is NOT a characteristic symptom of phenylketonuria (PKU)?

- (a) Intellectual disability
- (b) Skin rash
- (c) Light hair and eyes
- (d) Jaundice

30. Alkaptonuria is an inherited disorder affecting the metabolism of:

(b) Serotonin toxicity(c) Serotonin depletion syndrome(d) None of the above

35. Which of the following is NOT a function of noradrenaline (norepinephrine)?

- (a) Regulation of blood pressure
- (b) Stimulation of the fight-or-flight response
- (c) Regulation of mood
- (d) Promotion of sleep

36. Heme degradation primarily occurs in the:

- (a) Liver
- (b) Spleen
- (c) Kidneys
- (d) Intestines

37. Bilirubin is a yellowish pigment formed during the breakdown of:

- (a) Hemoglobin
- (b) Myoglobin
- (c) Cytochrome c
- (d) All of the above

38. Conjugated bilirubin is more water-soluble than unconjugated bilirubin and can be:

(a) Excreted in bile

- (b) Excreted in urine
- (c) Both (a) and (b)
- (d) Neither (a) nor (b)

39. High levels of unconjugated bilirubin in the blood can lead to:

- (a) Jaundice
- (b) Hemolytic anemia
- (c) Both (a) and (b)
- (d) Neither (a) nor (b)

40. Neonatal jaundice is a common condition caused by:

- (a) Immature liver function in newborns that can't effectively process bilirubin.
 - (b) Genetic disorders affecting bilirubin metabolism.
 - (c) Both (a) and (b)
 - (d) None of the above